Produção Científica

**Artigo em Revista**

Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field dataNeogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore ParaÃba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., reliefedissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The reliefedissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In addition, two units of the latter (i.e., PB1 and PB2) previously mapped in the field were promptly separated based on Th concentration. A regression analysis indicated that the relationship between geophysical and geochemical values obtained for the PB1, PB2 and Barreiras Formation is significant (R-squared Â¼ 0.91; p-value <0.05). Map validation presented a high overall accuracy of 84%, with a coefficient of quantity disagreement of 12% and a coefficient of allocation disagreement of 8%. These results indicate that the methodology applied in the central onshore ParaÃba Basin can be successfully used for mapping the Barreiras Formation and Post- Barreiras Sediments in other areas of the Brazilian coast. The ability to rapidly and precisely map these units using such methodology could reveal their geographic distribution along the northeastern coast of Brazil. |

**Artigo em Revista**

Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE BrazilThe eastern continental margin of South America comprises a series of rift basins developed during the breakup of Pangea in the Jurassicâ€“Cretaceous. We integrated high resolution aeromagnetic, structural and stratigraphic data in order to evaluate the role of reactivation of ductile, Neoproterozoic shear zones in the deposition and deformation of post-rift sedimentary deposits in one of these basins, the ParaÃba Basin in northeastern Brazil. This basin corresponds to the last part of the South American continent to be separated fromAfrica during the Pangea breakup. Sediment deposition in this basin occurred in the Albianâ€“Maastrichtian, Eoceneâ€“Miocene, and in the late Quaternary. However, our investigation concentrates on the Mioceneâ€“Quaternary, which we consider the neotectonic period because it encompasses the last stress field. This consisted of an Eâ€“W-oriented compression and a Nâ€“S-oriented extension. The basement of the basin forms a slightly seaward-tilted ramp capped by a late Cretaceous to Quaternary sedimentary cover ~100â€“400 m thick. Aeromagnetic lineaments mark the major steeply-dipping, ductile Eâ€“W- to NE-striking shear zones in this basement. The ductile shear zones mainly reactivated as strike-slip, normal and oblique-slip faults, resulting in a series of Mioceneâ€“Quaternary depocenters controlled by NE-, Eâ€“W-, and a few NW-striking faults. Faulting produced subsidence and uplift that are largely responsible for the present-day morphology of the valleys and tablelands in this margin. We conclude that Precambrian shear zone reactivation controlled geometry and orientation, aswell as deformation of sedimentary deposits, until the Neogeneâ€“Quaternary. |

**Artigo em Revista**

GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imageryThe increasing importance of carbonate rocks as aquifers, oil reservoirs, and for urban problems is demanding detailed characterization of karst systems, a demand that can be partially satisfied with GPR imaging. However,the goal of imaging and interpreting karstified carbonate rocks is notoriously difficult due to the complex nature of the geometry of the dissolution and the GPR intrinsic limitations. One way forward is the direct comparison of GPR images with similar outcropping rocks. A joint study involving a 200 MHz GPR survey, unmanned aerial vehicle imagery (UAV), and outcrop characterization is presented aiming to improve the interpretation of sedimentary structures, fractures and karst structures in GPR images. The study area is a 500 m wide and 1000m long carbonate outcrop of the JandaÃra Formation in Potiguar basin, Brazil, where sedimentary, fracture,and karst features can be directly investigated in both vertical and horizontal plan views. The key elements to interpret GPR images of karstified carbonate rocks are: (1) primary sedimentary structures appear in radargrams as unaltered imaged strata but care must be taken to interpret complex primary sedimentary features, such as those associated with bioturbation; (2) subvertical fractures might appear as consistent discontinuities in the imaged strata, forming complex structures such as negative flowers along strikeâ€“slip faults; (3) dissolution may create voids along subhorizontal layers, which appear in radargrams as relatively long amplitude shadow zones; and (4) dissolutionmay also create voids along subvertical fractures, appearing in radargrams as amplitude shadow zones with relatively large vertical dimensions, which are bounded by fractures. |

**Artigo em Revista**

An identification problem related to the Biot system.In this paper, we study the propagation of elastic waves in porous media governed by the Biot equations in the low frequency range. We prove the existence and uniqueness result both for the direct problem and the inverse one, which consists in identifying the unknown scalar function f(t) in the body density force f(t) |

**Artigo em Revista**

Prony Filtering of Seismic DataProny filtering is a method of seismic data processing which can be used to solve various geological and production tasks, involving an analysis of target horizons characteristics and a prediction of possible productive zones. This method is based on decomposing the observed seismic signals by exponentially damped cosines at short-time intervals. As a result, a discrete Prony spectrum including values of four parameters (amplitude, damping factor, frequency, phase) can be created. This decomposition occurs at many short-time intervals moving along an observed trace. The combined Prony spectrum of the trace can be used to create images of the trace through a selection of some values of the parameters. These images created for all traces of a seismic section provide an opportunity for locating zones of frequency-dependent anomalous scattering and absorption of seismic energy. Subsequently, the zones can be correlated with target seismic horizons. Analysis and interpretation of these zones may promote understanding of the target horizons features and help to connect these features with the presence of possible reservoirs. |

**Artigo em Revista**

An identification problem related to the Biot systemIn this paper, we study the propagation of elastic waves in porous media governed by the Biot equations in the low frequency range. We prove the existence and uniqueness result both for the direct problem and the inverse one, which consists in identifying the unknown scalar function f(t) in the body density force f(t) |

**Artigo em Revista**

On an initial boundary value problem in nonlinear 3D-magnetoelasticityWe prove existence and uniqueness of a weak solution to an initial boundary value problem, related to the Maxwell and LamÃ© systems nonlinearly coupled through the so-called magnetoelastic effect. Uniqueness is proved under additional assumptions on the smoothness of the solution. |

**Artigo em Revista**

DIRECT PROBLEMS FOR POROELASTIC WAVES WITH FRACTIONAL DERIVATIVESWe prove the uniqueness and continuous dependence on the data of a weak solution to a problem for poroelastic waves with fractional derivatives both in unbounded and bounded time intervals and in all space dimensions. |

**Artigo em Revista**

3-D SEISMIC MODELING AND DEPTH MIGRATION COMBINING THE EXTRAPOLATION OF UPGOING AND DOWNGOING WAVEFIELDSThe 3-D acoustic wave equation is generally solved using finite difference schemes on the mesh which defines the velocity model. However, when numerical solution of the wave equation is done by finite difference schemes, attention should be taken with respect to dispersion and numerical stability. To overcome these problems, one alternative is to solve the wave equation in the Fourier domain. This approach is stabler and makes possible to separate the full wave equation in its unidirectional equations. Thus, the full wave equation is decoupled in two first order differential equations, namely two equations related to the vertical component: upgoing (-Z) and downgoing (+Z) unidirectional equations. Among the solution methods, we can highlight the Split-Step-Plus-Interpolation (SS-PSPI). This method has been proven to be quite adequate for migration problems in 3-D media, providing satisfactory results at low computational cost. In this work, 3-D seismic modeling is implemented using Huygensâ€™ principle and an equivalent simulation of the full wave equation solution is obtained by properly applying the solutions of the two uncoupled equations. In this procedure, a point source wavefield located at the surface is extrapolated downward recursively until the last depth level in the velocity field is reached. A second extrapolation is done in order to extrapolate the wavefield upwards, from the last depth level to the surface level, and at each depth level the previously stored wavefield (saved during the downgoing step) is convolved with a reflectivity model in order to simulate secondary sources. To perform depth pre-stack migration of 3-D datasets, the decoupled wave equations were used and the same process described for seismic modeling is applied for the propagation of sources and receivers wavefields. Thus, depth migrated images are obtained using appropriate image conditions: the upgoing and downgoing wavefields of sources and receivers are correlated and the migrated images are formed. The seismic modeling and migration methods using upgoing and downgoing wavefields were tested on simple 3-D models. Tests showed that the addition of upgoing wavefield in seismic migration, provide better result and highlight steep deep reflectors which do not appear in the results using only downgoing wavefields. |

**Artigo em Revista**

Q factor estimation from the amplitude spectrum of the timeâ€“frequency transform of stacked reflection seismic dataAttenuation is one factor that degrades the quality of reflection seismic subsurface imaging. It causes a progressive decrease in the seismic pulse energy and is also responsible for limiting seismic resolution. Currently, many methods exist for inverse Q filtering,which can be used to correct these effects to some extent; however, but all of these methods require the value of the Q factor to be known, and this information is rarely available. In this paper we present and evaluate three different strategies to derive the Q factor from the timeâ€“frequency amplitude spectrum of the seismic trace. They are based in the analyses of the amplitude decay trend curves that can be measured along time, along frequency or along a compound variable obtained from the timeâ€“frequency product. Some difficulties are highlighted, such as the impossibility to use short time window intervals that prevents the method from providing a precise map of the Q factor value of the subsurface layers. However, the Q factor estimation made in thisway can be used to guide the parameterization of attenuation correction by means of inverse Q filtering applied to a stacked seismic section; this is demonstrated in a real data example. |